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We present an implementation of quantum annealing �QA� via lattice Green’s function Monte Carlo
�GFMC�, focusing on its application to the Ising spin glass in transverse field. In particular, we study whether
or not such a method is more effective than the path-integral Monte Carlo- �PIMC� based QA, as well as
classical simulated annealing �CA�, previously tested on the same optimization problem. We identify the issue
of importance sampling, i.e., the necessity of possessing reasonably good �variational� trial wave functions, as
the key point of the algorithm. We performed GFMC-QA runs using such a Boltzmann-type trial wave
function, finding results for the residual energies that are qualitatively similar to those of CA �but at a much
larger computational cost�, and definitely worse than PIMC-QA. We conclude that, at present, without a serious
effort in constructing reliable importance sampling variational wave functions for a quantum glass, GFMC-QA
is not a true competitor of PIMC-QA.
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I. INTRODUCTION

Quantum annealing �QA� �1,2� is an optimization method
based on the idea of searching for the ground state of some
classical Hamiltonian by adiabatically switching off an ap-
propriate source of quantum fluctuations, in much the same
way as temperature would do in classical thermal annealing
�CA� �3�. The same approach is also known as adiabatic
quantum computation �4� in the quantum information com-
munity.

A very popular QA approach is based on an imaginary-
time quantum Monte Carlo �QMC� implementation, i.e., the
path-integral Monte Carlo �PIMC� approach. A certain suc-
cess in the application of PIMC-QA has been obtained in
most of the cases studied: the folding of off-lattice polymer
models �5,6�, the random Ising model �7,8�, and the random-
field Ising model ground-state search �9�, Lennard-Jones
clusters optimization �10,11�, and the traveling salesman
problem �12�. Nevertheless, a counterexample exists �13�,
where PIMC-QA performs definitely worse than simple CA:
the 3-Boolean-satisfiability �3-SAT� problem �14�, which is a
prototype of a large class of hard combinatorial optimization
problem �the so-called nondeterministic polynomial �NP�
complete class �see Ref. �15���.

In order to understand its features in detail, in a recent
paper �16� we have studied the PIMC-QA performance fo-
cusing our attention on a simple, but highly instructive, toy
problem: the double-well potential. There, we learned a few
possible dangers of the PIMC-QA method: �i� The unavoid-
ably finite temperature T, which provides a thermal lower
limit to the average residual energies �i.e., the energy mini-
mum estimated by QA minus its exact value�. �ii� The severe

sampling difficulties �i.e., ergodicity breaking�, which possi-
bly occur close to a Landau-Zener crossing �3�.

We propose here to investigate a QA algorithm based on a
different QMC technique, as an alternative to PIMC-QA. A
natural choice is provided by Green’s function Monte Carlo
�GFMC�. GFMC is different from PIMC in that it can di-
rectly sample the ground state �i.e., T=0� of a quantum
Hamiltonian, avoiding, in principle, the first of the PIMC
drawbacks. However—contrary to PIMC—GFMC is not a
completely unbiased scheme: It demands the knowledge of a
good approximation to the ground-state wave function to
achieve proper efficiency �17�. So, the result of this compari-
son of GFMC against PIMC is a priori not clear.

A sensible test for this new GFMC-QA algorithm is pro-
vided by the random Ising model, a real optimization prob-
lem already addressed through PIMC-QA, as well as CA, in
the recent past �7,8�. The Hamiltonian of the random Ising
model in transverse field is

H��� = − �
�i,j�

Ji,j�i
z� j

z − ��
i

�i
x = Hcl + Hkin, �1�

where ��i,j� indicates a sum over nearest neighbors, Ji,j are
random nearest-neighbor Ising coupling constants, and �i

z ,�i
x

are Pauli’s matrices on lattice site i. If we denote by �Si	 a
generic spin configuration �where Si= ±1 are the eigenvalues
of the �i

z matrix�, the challenging �classical� function we
want to minimize is just given by the first term in Eq. �1�,
Ecl��Si	�= ��Si	
Hcl
�Si	�, which here plays the role of a poten-
tial energy. The second term in Eq. �1�, Hkin=−��i�i

x, is the
source of quantum fluctuations, which then plays the role of
a kinetic energy. In particular, we will concentrate our efforts
on a representative instance, which has been extensively ana-
lyzed in Refs. �7,8�. This is a two-dimensional �2D� instance,
on a 80�80 square lattice, being the couplings Ji,j drawn
from a flat distribution in �−2,2�. The choice of a 2D case
is motivated by the fact that the Ising glass ground-state
search without a longitudinal magnetic field—is actually a
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polynomial problem �18� in 2D, where very efficient branch
and cut algorithms �see Ref. �19�� are known to find the true
optimal-state energy EGS. This provides for a clear bench-
mark for an annealing study.

The goal is to simulate the imaginary-time evolution de-
fined by Eq. �1� starting from a large value of the transverse
field �, which is then monotonically ramped down to zero in
a certain finite time �. So, � is the annealing parameter of
the simulation. The adiabatic theorem �20� ensures that for
“slow enough” evolution, the exact unperturbed �i.e., �=0�
ground state should be eventually recovered. We note that
the annealing schedule might also have no characteristic time
�—for instance, a power-law decrease of �. Remarkable
convergence theorems �21� have been recently proven for
both PIMC-QA and GFMC-QA, if a power-law annealing
schedule is allowed: nevertheless, the bound on the power-
law exponent decreases as the size of the systems increases
�21�, which might make a truly convergent power-law an-
nealing impracticably slow. We will use here a linear anneal-
ing ��t�=�0�1− t /�� with a finite � to compare directly our
results with previous publications using the same schedule
�7,8�, originally inspired by its being close in spirit to the
actual experimental realization of QA in Ising ferroglasses
�22,23�.

The rest of the paper is organized as follows: In Sec. II we
present the main ideas of a GFMC-based QA approach. In
Sec. III we present the results of our variational studies,
showing the inherent difficulties associated to the selection
of good wave functions for a disordered quantum system. In
Sec. IV we discuss the GFMC-QA results and compare them
with previous PIMC-QA and CA data on the same problem.
Finally, in Sec. V we give some concluding remarks.

II. GREEN’S FUNCTION MONTE CARLO QUANTUM
ANNEALING: IDEAS

Every QA algorithm is based on the iterative solution of
an appropriate quantum dynamics, which for the problem at
hand, is the Schrödinger dynamics associated to the Hamil-
tonian in Eq. �1�. The basic evolution step �from now on �
=1� is

��t + �t� = e−iH���t���t��t� , �2�

which should be iterated during the simulation until the al-
gorithm finally stops when the annealing parameter � is re-
duced to zero. The total number of annealing steps is referred
to as the annealing time of the simulation.

As argued in Ref. �24�, an imaginary-time quantum evo-
lution is �for our optimization purposes� equally good, and
most likely even superior, to the standard real-time evolu-
tion. In practice, it is better to use the imaginary-time evolu-
tion operator, exp�−H���t���t�, instead of exp�−iH���t���t�
in Eq. �2�: the imaginary-time evolution naturally tends to
filter out the corresponding ground state of H���t�� from the
state it is applied to �17,24�. In this sense, the Green’s func-
tion Monte Carlo �GFMC� is just a stochastic technique,
which implements such a form of imaginary-time propaga-
tion �17�. However, the process underlying this iterated
method is not a properly defined Markov chain �25�, and so,

it cannot be immediately simulated by a standard Monte
Carlo approach �26�. In order to solve this problem, the
phase space must be extended: a state is then defined by
means of its position x—the configuration x= �Si	 in the Hil-
bert space of the system—and its weight w—which is essen-
tially related to ��x�—�the pair �x ,w� is often referred to as a
walker.� In practice, to improve convergence and stability,
many walkers are evolved at the same time and then periodi-
cally reconfigured according to a well-defined stochastic pro-
cess called branching �17,25�. The analogy of such a many-
walker GFMC with a genetic-like algorithm is worth noting
�27�. Each walker �x ,w� plays the role of an individual that
propagates �mutates� increasing or decreasing its fitness—
represented by its weight w—with branching favoring the
survival of those with highest fitness �largest w�.

The final, important ingredient that makes the algorithm
work is the so-called importance sampling �26�. It can also
be seen, in the genetic analogy mentioned before, as a way of
proposing mutations that—instead of being equally
probable—are biased by a function which guides the system
towards the most representative configurations. This is ob-
tained by a guess of the exact ground state, the so-called trial
wave function �T�x�. As we see later, a good trial function
can drastically improve the quality of a GFMC simulation
�28�. In the next section we will describe two choices of
�T�x� that we have tested for the Ising case, and the difficul-
ties encountered.

III. VARIATIONAL WAVE FUNCTIONS FOR THE ISING
SPIN GLASS

The first idea that comes to mind is a kind of “mean-field”
�MF� wave function, made up of a product of single-site
factors such as


�T
�MF�� = �

i=1

N � e+hi/2
↑�i + e−hi/2
↓�i

2 cosh�hi�
� , �3�

where �hi	, the local fields in the z direction on each site i,
are variational parameters to be optimized for each given
value of the transverse field �. The optimization of the �hi	
amounts to finding the minimum of the variational energy,
ET

�MF�=−��i,j�Ji,jmimj −��i
1−mi

2, where mi=tanh�hi� are
the local magnetizations �27�. As it turns out, this optimiza-
tion can be easily done only for large enough �, where the
solution with mi=0, representing all spins aligned along the x
direction, is found. This solution survives down to some
value �cr of the transverse field, below which nontrivial
solutions—i.e., with nonvanishing local magnetizations mi
�0—start to appear. Because of the many similarities be-
tween our model in the low-� region and the well-known
Weiss mean-field approach to the classical random Ising
model �29�, we expect the number of local minima to be very
large. In a sense, minimizing ET

�MF� in the glassy phase ��
��cr� is not easier than finding the classical ground state of
the target problem at �=0, even if a continuous set of vari-
ables, mi� �−1,1�, is employed instead of the original dis-
crete one, Si= ±1. A numerical confirmation of this simple
analogy is reported in Ref. �27�.
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A second, quite natural choice of �T is a Boltzmann-type
wave function of the form

�T
�	���Si	� 
 e−�	/2�Ecl��Si	�, �4�

where 	 is the variational parameter to be optimized, and
Ecl��Si	� �see Sec. I� is the classical energy of a given spin
configuration �Si	. Once again, for large � we expect to find
	=0 �i.e., all configurations equally present in �T�, while by
decreasing �, larger and larger values of 	 will favor con-
figurations �Si	 where the classical potential energy Ecl��Si	�
has a local minimum until we get, for �=0, to the asymptotic
limit 	→� �ideally�, required by a wave function that is
perfectly localized in the global minimum �whose energy is
indicated as EGS=N�GS, N being the number of sites�.

To calculate the expectation value of the energy with the
Boltzmann-type choice in Eq. �4�, as a function of the single
parameter 	, we used a standard variational Monte Carlo
�VMC� algorithm �17� with single spin-flip moves. Figure 1
shows �top panel� the optimal value 	opt of 	, which mini-
mizes the variational energy Etot

�Boltz�= ��T
�	� 
H 
�T

�	��, for sev-
eral values of the transverse field �. Surprisingly, 	opt satu-
rates for small � to about 	opt�2, instead of showing the
expected 	opt→ +� behavior. This is clearly an effect of a
severe ergodicity loss of the VMC algorithm, which is not
difficult to understand. For a given 	 the VMC samples the
thermal distribution 
�T

�	��x�
2=e−	Ecl�x�. We are therefore
searching for the effective temperature 1/	, which provides
the best approximation to the wave function of the ground
state of a quantum Ising glass at nonzero �. Now, from clas-
sical spin-glass physics �30� we know that a threshold energy
Eth exists below which the system has a finite complexity,
i.e., it displays an exponentially ��exp N� large number of
metastable minima. Close to this threshold energy, the relax-
ation of any local algorithm towards equilibrium becomes
exceedingly slow �the algorithm gets stuck for a long time in
every visited minimum� and the measured average quantities
are no longer representative of their true thermodynamical
values. Evidently, for �→0, the variational algorithm is not
visiting the regions near the true minimum of the classical
energy, but is wandering in a high-energy band of metastable
states, separated by moderate energy barriers. In such a case,
a small and finite value of 	 allows one to still overcome
such barriers, so as to find slightly more favorable local
minima, while perfect localization �	→ +�� in a wrong ex-
ited state would lead to an average bigger residual energy.

The central and bottom panels in Fig. 1 show the optimal
variational energies �tot

�Boltz�= ��T
�	opt� 
H 
�T

�	opt�� /N, and the
variational residual energy �res

�Boltz�= ��T
�	opt�
Hcl
�T

�	opt�� /N
−�GS corresponding to the optimal 	 shown in the top panel,
for several values of transverse field �. For large � values,
the variational total energy �center panel� is linear in �, as it
should be, since the transverse field kinetic term dominates
in the quantum paramagnetic phase �see Eq. �1��, while the
variational residual energy per site is of order 1. By decreas-
ing �, we notice that the variational residual energy satu-
rates, for small �, to finite nonzero values of order 0.03, in
agreement with the previously noted saturation in the opti-
mal 	opt. A closer inspection shows that the variational re-

sidual energy is actually nonmonotonic for ��0.25, again an
artifact of sampling difficulties. Notice, however, that this
saturation value is definitely below the best �down to �
=0.01� results provided by the mean-field approach intro-
duced above, which is of order 0.035 �shown for comparison
by a dashed horizontal line� �27�. Therefore, with all its pit-
falls, the Boltzmann-type trial wave function in Eq. �4� pro-
vides, at low �, an approximation of the true ground state,
which is marginally better than that obtained by the mean-
field Ansatz, Eq. �3�. Moreover, �T

�	� is also much better be-
haved, and easier to optimize.

FIG. 1. �Color online� �Top� Plot of the optimal 	, 	opt, for the
“Boltzmann� trial wave function �T

�	� defined in Eq. �4�, for several
values of �. The dashed line is the fit employed in Sec. IV. �Center�
Optimal variational energies �tot

�Boltz� corresponding to the 	opt shown
in the top panel, and the GFMC estimate of the total energy per
spin. The inset magnifies the small-� region, where little differences
are noticeable. �Bottom� The variation residual diagonal energy
�res

�Boltz� corresponding to the 	opt shown in the top panel, and two
GFMC estimators of the residual diagonal energy: the mixed and
the Ceperley one �see the text�. The dashed horizontal line repre-
sents the best residual energy ever achieved, for �0.01, by em-
ploying the mean-field trial wave function in Eq. �3�.
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As a last quality test for the Boltzmann-type trial wave
function, we performed GFMC simulations with importance
sampling in order to estimate the ground-state properties of
the Hamiltonian in Eq. �1�, again for several fixed values of
�. Details can be found in Ref. �27�.

The middle panel of Fig. 1 shows the estimate of the total
energy �per spin� for some given value of �, compared to the
correspondent variational results. The inset allows one to ap-
preciate the differences between the two results in the small
� region. As expected, GFMC allows one to gently improve
the variational findings.

In the bottom panel we plot data regarding the residual
diagonal energy. We report both the mixed estimate
�17,31�—labeled as “mixed”—and the Ceperley estimate
�31�—labeled as “Ceperley”—for this observable as ob-
tained by GFMC simulations. Once again, they are consis-
tently lower than the correspondent variational results, which
are also displayed in the same panel. On the other hand, the
nonmonotonic behavior of the residual energy data for small
��0.25, already noted for the pure variational results,
should ring a bell about the quality of the Boltzmann-type
wave function, and the efficiency of the sampling in that
region.

IV. GFMC QUANTUM ANNEALING

We finally present the results of the GFMC-based QA
approach, where the transverse field � in Eq. �1� is decreased
stepwise during the simulation, while at the same time, the
importance sampling Boltzmann-type wave function is
changed according to the corresponding value of the varia-
tional parameter 	opt���. �Practically, we used for 	��� the
fitting function shown in Fig. 1 �upper panel.��

As a benchmark, we will compare GFMC-QA outcomes
with the path-integral Monte Carlo quantum annealing
�PIMC-QA� and classical simulated annealing �CA� results
described in Refs. �7,8�. We reduce the coupling � in Eq. �1�
at each Monte Carlo step �MCS� in a linear way: we start
from an initial large enough value of the transverse field,
�0=2.5, and then we set �n=�0�1−n /�� during the nth MCS
�0�n��� �32�. � is the total annealing time measured as the
total number of MCS performed by the algorithm. We used
20 walkers, and performed branching at each MCS, because
the low-� region is affected by severe weight instabilities,
which would otherwise make the algorithm completely un-
stable �for the initial, large-� part of the annealing one could
consider branching less often, as weights are well under con-
trol; this makes a negligible difference�. Finally, we made
use of a continuous-time approach, sampling directly the
probability of generating an off-diagonal move according to
a Poisson’s process �31�.

The fact that importance sampling is indeed a crucial in-
gredient is demonstrated, for our case, in Fig. 2, where we
show the data obtained by GFMC-QA without importance
sampling �top curve� compared with the ones obtained with
importance sampling. Quite evidently, the residual energy
obtained without importance sampling is terribly bad. Figure
2 also shows the best residual energy per spin ever reached
during the annealing simulation, for several values of � av-

eraged over ten independent repetitions of the whole anneal-
ing process �due to computer-time limitations, only a single
run is shown for the largest, �108, annealings�. For com-
parison, the CA and PIMC-QA data obtained in Ref. �7� are
also shown. Notice first that the � axes of the three calcula-
tions are completely unrelated: the GFMC � is measured in
units in which a MCS is just a single spin-flip, while MCS
for the CA and PIMC-QA are intended as sweeps of the
entire lattice of N spins �including all the 20 Trotter slices,
for the PIMC case �7��. For this reason, we also present the
CA and PIMC-QA data in a shifted time axis where � is
multiplied by the number of sites �here N=802, rightmost
curves�. Although the GFMC-QA data are strictly below both
the CA and the PIMC-QA data, on the same per spin time
unit �i.e., compared to the shifted CA and PIMC-QA data�, it
is clear that the GFMC slope is still worse than that of
PIMC-QA, and indeed surprisingly similar to CA. Moreover,
the CPU time needed for a single spin flip in GFMC is much
larger than the corresponding single-spin move in CA or
PIMC-QA �each GFMC move costs of order N operations�.

Let us consider the similarity between the CA and the
GFMC-QA slopes that Fig. 2 suggests. This similarity must
be somehow related to the fact that we have used, as impor-
tance wave function for the GFMC, a Boltzmann-type wave
function, �T�x�
e−�	/2�Ecl�x�, as already observed in Sec. III
�27�. More precisely, it is possible to show that by neglecting
the weights of the walkers �as well as the associated branch-
ing process�, GFMC reduces to a VMC sampling of the
given trial function �33� �here the Boltzmann-type one�. In
other words, a GFMC-QA without weights would be just a
computationally heavy way of doing a classical simulated
annealing with a peculiar form of the temperature annealing

FIG. 2. �Color online� The average best residual energy obtained
by GFMC-QA for the random Ising model instance studied in Refs.
�7,8�, versus the total annealing time �. Upper rhombi: GFMC-QA
results without importance sampling ��T=1�. Lower rhombi:
GFMC-QA results with importance sampling performed by using
the optimal trial wave function �T

�	� of Sec. III. The GFMC time
unit is a single spin flip, while CA and PIMC-QA Monte Carlo time
units are sweeps of the entire lattice �see Ref. �8��. The transverse
field is linearly reduced down to 10−4 in a total annealing time �,
starting from �0=2.5. Previous results obtained by classical simu-
lated annealing �CA� and by path-integral Monte Carlo quantum
annealing �PIMC-QA� �7,8� are shown for comparison.
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schedule 	opt���. �Notice, in passing, that such an optimal
effective temperature never gets too low, since 	opt saturates
to around 	opt�2 for low �.�

Since genuine quantum mechanics enters only through the
weights that the GFMC carries over, quite evidently, such a
weight updating is—in the present disordered case—not suf-
ficiently strong and effective as to make the resulting aver-
ages really different from the underlying thermal Markov
chain.

V. SUMMARY AND CONCLUSIONS

In this paper we have investigated the practical feasibility
of Green’s function Monte Carlo �GFMC� as a tool for per-
forming quantum annealing �QA�. As a natural test case, we
have concentrated our attention on a specific random in-
stance of the two-dimensional Edwards-Anderson Ising
model in transverse field, which was studied in Refs. �7,8�
using PIMC-QA as well as standard thermal classical anneal-
ing �CA�. �A more refined ensemble average would certainly
be needed if we were to assess the general performance
of the algorithm on a typical instance of the problem. A
specific instance comparison with the competing algorithms
�PIMC-QA and CA�, however, turns out to be particularly
instructive in the present case, as it shows in the clearest
fashion the remarkable and unexpected similarity of our
GFMC-QA results with CA.�

We identified the choice of the trial wave function �a nec-
essary ingredient in any GFMC� as the crucial step—as well
as the weak point—of a GFMC based QA �GFMC-QA�. In
particular, we found that the simplest mean-field wave func-
tion �analogous in many respects to the Weiss theory of fer-
romagnetism� is computationally equivalent to the original
problem, and then completely useless. Using, instead, a sim-
pler Boltzmann-type trial function �where the pseudotem-
perature is the only variational parameter�, the resulting
GFMC is feasible, but the corresponding residual energy re-
sults are disappointingly close—in magnitude and in slope,
when considered as a function of the annealing time—to
those found by a standard classical simulated annealing
�which is computationally much cheaper�. We can rationalize
this finding with the inability of the GFMC algorithm, in the
present disordered context, to properly implement the quan-
tum evolution.

Concerning possible improvements in the implementa-
tion, we mention that we have not attempted a systematic
study of alternative annealing schedules such as power laws.
�21� Likewise, we have not experimented with other sam-
plings of the Green’s function �34� �for instance, Metropolis
acceptance�, or using alternative multi-spin-flip Green’s
functions �21�. Nevertheless, even our limited experimenta-
tion with a GFMC-QA algorithm shows that one of the cru-
cial theoretical questions to be addressed is the ability to find
a good trial variational wave function describing well
enough the small-� glassy phase of an Ising spin glass. This
is, quite evidently, a highly nontrivial task. Taking inspiration
from the existing literature on quantum models without dis-
order, one might think of introducing pair correlations into
the trial wave function—for instance, by means of spin-spin
Jastrow factors, either at nearest neighbor or at longer
range—as usually done in the framework of correlated lattice
models �25�, and of electronic structure calculations �17,33�.
Unfortunately, for a quantum spin glass, due to frustration
and disorder, the form of such pair correlations is far from
obvious. Moreover, whenever a large number of variational
parameters in the trial function is required, very advanced
minimization techniques, such as those discussed in Ref.
�35�, are mandatory. These kinds of computational schemes,
however, have been successfully tested only in equilibrium
simulations of ordered systems, while our GFMC-QA should
cope with a nonequilibrium dynamics in a disordered system,
a highly nontrivial step forward.

We conclude that, at present, without a serious effort in
constructing reliable importance sampling variational wave
functions for a quantum glass, GFMC-QA is likely not a true
competitor of PIMC-QA.
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